552 research outputs found

    Prospects for the Medical Use of Interferon in 1984

    Get PDF
    Interferon, a natural and wide spectrum antiviral polypeptide that was discovered in 1957, has been extensively described. In addition to its antiviral effect, interferon has been found to suppress tumor growth and modulate the immune response. Until 1980, interferon was primarily prepared for clinical trials in human leukocytes derived from the buffy coat of whole blood. A major breakthrough occurred in the late 1970s when human interferon was produced by DNA recombinant methods in such heterologous cells as bacteria (genetic engineering). Interferon is not commercially available in 1984, but it may, based on clinical trials in humans, become part of combination therapy for certain cancers. It also holds promise for the treatment of chronic active hepatitis due to hepatitis B virus. Interferon has been effective in herpes virus-induced infections, suppressing reactivation episodes as well as the signs and symptoms of varicella-zoster virus infections. Prophylactically, but not therapeutically, interferon exerts a favorable effect on cytomegalovirus (CMV) infection; however, interferon trials are needed in catastrophic virus infections where no established (or effective) therapy exists. Prophylactic intranasal application of interferon was shown to suppress the symptoms of the common cold. The role of interferon treatment in the acquired immunodeficiency syndrome (AIDS) and its associated opportunistic infections and/or Kaposi\u27s sarcoma requires further study but shows promise, particularly for the latter

    O-GlcNAcylation Increases ChREBP Protein Content and Transcriptional Activity in the Liver

    Get PDF
    International audienceOBJECTIVE Carbohydrate-responsive element–binding protein (ChREBP) is a key transcription factor that mediates the effects of glucose on glycolytic and lipogenic genes in the liver. We have previously reported that liver-specific inhibition of ChREBP prevents hepatic steatosis in ob/ob mice by specifically decreasing lipogenic rates in vivo. To better understand the regulation of ChREBP activity in the liver, we investigated the implication of O-linked ÎČ-N-acetylglucosamine (O-GlcNAc or O-GlcNAcylation), an important glucose-dependent posttranslational modification playing multiple roles in transcription, protein stabilization, nuclear localization, and signal transduction. RESEARCH DESIGN AND METHODS O-GlcNAcylation is highly dynamic through the action of two enzymes: the O-GlcNAc transferase (OGT), which transfers the monosaccharide to serine/threonine residues on a target protein, and the O-GlcNAcase (OGA), which hydrolyses the sugar. To modulate ChREBPOG in vitro and in vivo, the OGT and OGA enzymes were overexpressed or inhibited via adenoviral approaches in mouse hepatocytes and in the liver of C57BL/6J or obese db/db mice. RESULTS Our study shows that ChREBP interacts with OGT and is subjected to O-GlcNAcylation in liver cells. O-GlcNAcylation stabilizes the ChREBP protein and increases its transcriptional activity toward its target glycolytic (L-PK) and lipogenic genes (ACC, FAS, and SCD1) when combined with an active glucose flux in vivo. Indeed, OGT overexpression significantly increased ChREBPOG in liver nuclear extracts from fed C57BL/6J mice, leading in turn to enhanced lipogenic gene expression and to excessive hepatic triglyceride deposition. In the livers of hyperglycemic obese db/db mice, ChREBPOG levels were elevated compared with controls. Interestingly, reducing ChREBPOG levels via OGA overexpression decreased lipogenic protein content (ACC, FAS), prevented hepatic steatosis, and improved the lipidic profile of OGA-treated db/db mice. CONCLUSIONS Taken together, our results reveal that O-GlcNAcylation represents an important novel regulation of ChREBP activity in the liver under both physiological and pathophysiological conditions

    Inhibition of Y1 receptor signaling improves islet transplant outcome

    Get PDF
    Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in ÎČ-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in ÎČ-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in ÎČ- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.info:eu-repo/semantics/publishe

    Notch Signaling Regulates Bile Duct Morphogenesis in Mice

    Get PDF
    BACKGROUND: Alagille syndrome is a developmental disorder caused predominantly by mutations in the Jagged1 (JAG1) gene, which encodes a ligand for Notch family receptors. A characteristic feature of Alagille syndrome is intrahepatic bile duct paucity. We described previously that mice doubly heterozygous for Jag1 and Notch2 mutations are an excellent model for Alagille syndrome. However, our previous study did not establish whether bile duct paucity in Jag1/Notch2 double heterozygous mice resulted from impaired differentiation of bile duct precursor cells, or from defects in bile duct morphogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Here we characterize embryonic biliary tract formation in our previously described Jag1/Notch2 double heterozygous Alagille syndrome model, and describe another mouse model of bile duct paucity resulting from liver-specific deletion of the Notch2 gene. CONCLUSIONS/SIGNIFICANCE: Our data support a model in which bile duct paucity in Notch pathway loss of function mutant mice results from defects in bile duct morphogenesis rather than cell fate specification

    Variable Expression of Cre Recombinase Transgenes Precludes Reliable Prediction of Tissue-Specific Gene Disruption by Tail-Biopsy Genotyping

    Get PDF
    The Cre/loxP-system has become the system of choice for the generation of conditional so-called knockout mouse strains, i.e. the tissue-specific disruption of expression of a certain target gene. We here report the loss of expression of Cre recombinase in a transgenic mouse strain with increasing number of generations. This eventually led to the complete abrogation of gene expression of the inserted Cre cDNA while still being detectable at the genomic level. Conversely, loss of Cre expression caused an incomplete or even complete lack of disruption for the protein under investigation. As Cre expression in the tissue of interest in most cases cannot be addressed in vivo during the course of a study, our findings implicate the possibility that individual tail-biopsy genotypes may not necessarily indicate the presence or absence of gene disruption. This indicates that sustained post hoc analyses in regards to efficacy of disruption for every single study group member may be required

    Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD.

    Get PDF
    OBJECTIVE: Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor expressed in tissues with high oxidative activity that plays a central role in metabolism. In this work, we investigated the effect of hepatocyte PPARα on non-alcoholic fatty liver disease (NAFLD). DESIGN: We constructed a novel hepatocyte-specific PPARα knockout (Pparα(hep-/-)) mouse model. Using this novel model, we performed transcriptomic analysis following fenofibrate treatment. Next, we investigated which physiological challenges impact on PPARα. Moreover, we measured the contribution of hepatocytic PPARα activity to whole-body metabolism and fibroblast growth factor 21 production during fasting. Finally, we determined the influence of hepatocyte-specific PPARα deficiency in different models of steatosis and during ageing. RESULTS: Hepatocyte PPARα deletion impaired fatty acid catabolism, resulting in hepatic lipid accumulation during fasting and in two preclinical models of steatosis. Fasting mice showed acute PPARα-dependent hepatocyte activity during early night, with correspondingly increased circulating free fatty acids, which could be further stimulated by adipocyte lipolysis. Fasting led to mild hypoglycaemia and hypothermia in Pparα(hep-/-) mice when compared with Pparα(-/-) mice implying a role of PPARα activity in non-hepatic tissues. In agreement with this observation, Pparα(-/-) mice became overweight during ageing while Pparα(hep-/-) remained lean. However, like Pparα(-/-) mice, Pparα(hep-/-) fed a standard diet developed hepatic steatosis in ageing. CONCLUSIONS: Altogether, these findings underscore the potential of hepatocyte PPARα as a drug target for NAFLD

    Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy

    Get PDF
    Defects in mitochondrial fusion or fission are associated with many pathologies, raising the hope that pharmacological manipulation of mitochondrial dynamics may have therapeutic benefit. This approach assumes that organ physiology can be restored by rebalancing mitochondrial dynamics, but this concept remains to be validated. We addressed this issue by analyzing mice deficient in Mff, a protein important for mitochondrial fission. Mff mutant mice die at 13 wk as a result of severe dilated cardiomyopathy leading to heart failure. Mutant tissue showed reduced mitochondrial density and respiratory chain activity along with increased mitophagy. Remarkably, concomitant deletion of the mitochondrial fusion gene Mfn1 completely rescued heart dysfunction, life span, and respiratory chain function. Our results show for the first time that retuning the balance of mitochondrial fusion and fission can restore tissue integrity and mitochondrial physiology at the whole-organ level. Examination of liver, testis, and cerebellum suggest, however, that the precise balance point of fusion and fission is cell type specific

    Islet ÎČ-Cells Deficient in Bcl-xL Develop but Are Abnormally Sensitive to Apoptotic Stimuli

    Get PDF
    OBJECTIVE: Bcl-xL is an antiapoptotic member of the Bcl-2 family of proteins and a potent regulator of cell death. We investigated the importance of Bcl-xL for beta-cells by deleting the Bcl-x gene specifically in beta-cells and analyzing their survival in vivo and in culture. RESEARCH DESIGN AND METHODS: Islets with beta-cells lacking the Bcl-x gene were assessed in vivo by histology and by treatment of mice with low-dose streptozotocin (STZ). Islets were isolated by collagenase digestion and treated in culture with the apoptosis inducers staurosporine, thapsigargin, gamma-irradiation, proinflammatory cytokines, or Fas ligand. Cell death was assessed by flow cytometric analysis of subgenomic DNA. RESULTS: Bcl-xL-deficient beta-cells developed but were abnormally sensitive to apoptosis induced in vivo by low-dose STZ. Although a small proportion of beta-cells still expressed Bcl-xL, these did not have a survival advantage over their Bcl-xL-deficient neighbors. Islets appeared normal after collagenase isolation and whole-islet culture. They were, however, abnormally sensitive in culture to a number of different apoptotic stimuli including cytotoxic drugs, proinflammatory cytokines, and Fas ligand. CONCLUSIONS: Bcl-xL expression in beta-cells is dispensible during islet development in the mouse. Bcl-xL is, however, an important regulator of beta-cell death under conditions of synchronous stress. Bcl-xL expression at physiological levels may partially protect beta-cells from apoptotic stimuli, including apoptosis because of mediators implicated in type 1 diabetes and death or degeneration of transplanted islets

    Amiloride derivatives enhance insulin release in pancreatic islets from diabetic mice

    Get PDF
    BACKGROUND: Amiloride derivatives, commonly used for their diuretic and antihypertensive properties, can also cause a sustained but reversible decrease of intracellular pH (pH(i)). Using dimethyl amiloride (DMA) on normal rodent pancreatic islets, we previously demonstrated the critical influence of islet pH(i )on insulin secretion. Nutrient-stimulated insulin secretion (NSIS) requires a specific pH(i)-range, and is dramatically enhanced by forced intracellular acidification with DMA. Furthermore, DMA can enable certain non-secretagogues to stimulate insulin secretion, and induce time-dependent potentiation (TDP) of insulin release in mouse islets where this function is normally absent. The present study was performed to determine whether pH(i)-manipulation could correct the secretory defect in islets isolated from mice with type 2 diabetes. METHODS: Using two mouse models of type 2 diabetes, we compared a) pHi-regulation, and b) NSIS with and without treatment with amiloride derivatives, in islets isolated from diabetic mice and wild type mice. RESULTS: A majority of the islets from the diabetic mice showed a slightly elevated basal pH(i )and/or poor recovery from acid/base load. DMA treatment produced a significant increase of NSIS in islets from the diabetic models. DMA also enabled glucose to induce TDP in the islets from diabetic mice, albeit to a lesser degree than in normal islets. CONCLUSION: Islets from diabetic mice show some mis-regulation of intracellular pH, and their secretory capacity is consistently enhanced by DMA/amiloride. Thus, amiloride derivatives show promise as potential therapeutic agents for type 2 diabetes
    • 

    corecore